DISSOLUTION OF AN ELLIPSOIDAL BUBBLE IN A SLIGHTLY VISCOUS LIQUID
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The steady-state velocity, the degree of deformation, and the convective-diffusion-limited rate of
quasisteady-state growth (or dissolution) are considered for gas bubbles having shapes close to those of
spheres or disks. It is assumed that there are no surface-active substances in the liquid. A qualitative
agreement is found between the calculated dissolution rate and the experimental data.

NOTATION

a—radius of the sphere of eguivalent volume;

u—bubble velocity with respect to the still liquid at infinity;
v—kinematic viscosity of the liquid;

p—liquid density;

D—gas diffusion coefficient in the liquid;

o—surface tension;

g—gravitational acceleration;

d—[R = 2au/]—Reynolds number;

e—[P = 2au/D]—Peclet number;

f—[W = 2apu®/o]—Weber number,

1. Shape and steady-state velocity of the gas bubble, The rate of quasi~steady-state dissolution of a gas bubble
in a liquid has been calculated by Levich [1] for the following conditions: a) the bubble is of spherical shape; b) the
velocity field of the liquid flow around the bubble is that of an ideal liquid. However, these two conditions may be
incompatible, since the second implies that RY2 » 1, so bubble deformation may have to be taken into account.

The question of bubble shape was discussed by Moore [2, 3], who showed that to determine the surface shape it
is sufficient to calculate the pressure p in the flow of an ideal liquid around the bubble, Allowance for liquid viscosity
leads to a correction of order 1/R in the pressure distribution near the bubble surface. Accordingly, for a given flow
velocity around the bubble and for sufficiently large Reynolds numbers, the surface shape is given, with an accuracy
to terms of order 1/R, by

pto(RT+ Ry =p'. (L1
Here R, and R, are the main radii of the curvature of surface, and p' is the gas pressure in the bubble,

The degree of bubble deformation depends on the Weber number W. When W < 2, the bubble shape is close to
spherical. When W > 2, the bubble may be assumed to take on the shape of an oblate ellipsoid of revolution. We let
x be the ratio of the semimajor axis (perpendicular to the liquid flow) to the semiminor axis (parallel to the liquid
flow). The (W) dependence was found in [3] from the condition that Eq. (1.1)holds at the point on the bubble farthest

upstream and at a point at the intersection of the bubble surface with the horizontal plane of symmetry; at this latter
point, it was shown that

y—1 =29, W forxy—1<&1, (1.2)
W = a1 (1 — 4/ ay)? for *>1. (1.3)

The steady-state velocity of an ellipsoid was calculated by Moore [3] from the rate at which the liquid's kinetic
energy is dissipated. With an accuracy to terms of the order of R™Y2, his results were

u= 1, (ga? [v) 1 — &3 (x — 1] forx—1<k1, (1.4)
u=1/(nga® [vy") (1 —4[ax)? for>1. (1,5)

The first term in Eq. (1.4) is.the same as that given by Levich [1]; using it, we may calculate
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X — 1 =% apu? [ 5 = 0.043 (p ] ) gl®v W3R =
—3.5.10"3pg2a® | ov 2 . (1.6)

Substituting (1.6) into (1.4), we find that
uw="1)(ga%]/v) (1 — 4.6.10~%g2® / ov2) (L.7)

The experimental data in [4] show that as an air bubble moves in water at 6° C, there is an abrupt increase in the
drag coefficient at approximately R = 250; in water at 19° C, this increase starts at approximately R ='400. In the
first case, we have p = 1.00 g/cm?®, v = 0.0147 cm?/sec, and o = 0.75 * 107 J/em?; in the second, p = 1.00 g/cm?,

y = 0.0102 cm?¥/sec, and o= 0,73 - 107 J/cm?. Equation (1.6) yields x — 1 = 4,5 - 107 R¥? for the water at 19° C. The
effect of deformation on the flow velocity becomes significant when the right-hand side of Eq. (1.6) becomes
approximately equal to 0,5, which corresponds to W = 2,

When y¥* >» 1, it follows from Egs. (1.3) and (1.5) that
¥* = pga®u [ 3nov (1.8)

Equation (1.3) shows that an approximate expression for the steady-state ascent velocity can be found in the
region 3 < ¥ < 6 under the assumption W = const. It was established in [4, 5] in an analogous manner, on the basis of
experimental data, that the steady-state ascent velocity of a bubble of moderate size and having a shape close to that
of an oblate ellipsoid can be found from the condition W = 3,65:

u = 1.35 (0 ] pa) 2 . (1.9)

A larger bubble would have a mushroom shape, This indicates that the region occupied by the turbulent wake
covers about half the bubble surface. The drag of such a bubble is proportional to the square of the relative velocity.
The steady-state velocity of a mushroom-shaped bubble is [4]

uw=1.02Vga - (1.10)

Accordingly, the region in which Eq, (1.9) is applicable may be assumed bounded from above by a = 1.3 (o/pa)y/ 2.
For an air bubble in water, this means a < 0.35 cm. Accordingly, Egs. (1.8) and (1.9) yield the following bubble
deformation for the region ¥* > 1:

y2 = 0.143 (ga2 /v) (pa ] 0)". (1.11)

The right-hand side of this equation is on the order of the ratio of the velocity of an equivalent-volume sphere to that"
of a deformed ellipsoid,

The region of applicability of (1.11) is smaller than that for the relation (1. 9) between the ascent velocity of an
ellipsoidal bubble and its equivalent radius., As shown below, Eq. (1.11) holds only when the condition ¥2 << YR holds.
Otherwise, the corrections associated with a more accurate account of the liquid motion in the hydrodynamic boundary
layer and in the wake lead to a different dependence of the bubble ascent velocity on the degree of deformation, and
thus to a different dependence of the degree of deformation on the equivalent radius.

Moreover, at large values of x, the actual bubble shape given by Eq. (1.1) differs from ellipsoidal., As was
shown in [3], Eq. (1.1) is satisfied over the entire bubble surface only approximately, with a maximum error of 10%
at y = 2 or 55% at y = 4. Approximately the same results were obtained by Kiselev [6] in a different manner. However, '
a comparison of the results obtained by Moore [3] with the experimental data of Haberman and Morton [4] shows that
the steady-state bubble velocity apparently does not depend significantly on the deviation of the actual surface shape
from the ellipsoidal, The calculated ellipsoidal velocity coincides with the experimental bubble velocity with an error
no greater than 20% in the region up to x = 4, while the ellipsoid velocity may differ by an order of magnitude from
that of an equivalent-volume sphere. .

2. Convective diffusion to the ellipsoidal surface, The dissolution rate of an ellipsoidal bubble should differ from
that of a spherical one of equivalent volume because of the different steady-state velocity, surface area, and

distribution of the effective thickness of the diffusion boundary layer along the surface.

We assume that the velocity field of the flow around the bubble is that of an ideal liquid. For a given velocity of
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the ellipsoidal bubble, the diffusion flux to its surface can be calculated in a manner similar to that proposed by Levich
for the case of a spherical bubble [1].

We assume that the origin of coordinates is at the center of the ellipsoid, and that the z-axis is parallel to the
liquid flow velocity u. The equation of the surface of an axisymmetric ellipsoid is

T i
st LA (F=n>1). (2.1)
We introduce an orthogonal coordinate system «, 8, ¢ such that

=k [(1+a? (1 —f)2cosq, y=FI[1 +a2)(1— P21 sing (2.2)
z=Fkaf.

It follows that
dz? + dy? 4 dz? = h,2da® - hp2dB? -h2de? |

2 Yy 2 ! 21z ~ 1,
k() = BTEE) T k=Rl a i — (2.3)

The equation for the surface of the ellipsoid corresponds to & = ¢; then
kA dap)ve =1, ko = Lz, (2.4)
Lamb [7] has calculated the velocity potential & for the flow of an ideal liquid around an ellipsoid:

D =ukB o +p (I — o arcctg a)],

= [arectg g — oty / (1 -+ 22)]" (2.5)
Accordingly, the velocity components Vas Vg in the ellipsoidal coordinate system are
L T
( —F ) [ - p(1 —aarcetga)] .
The convective~diffusion equation becomes
Pudc | Pgde D (8 Mhoac 9 haliy ac
e 3 T = i (gt o ) 2.7
with boundary conditions
¢ =cs for o=0, Bs£—1,
¢ —>¢, for kr—soco, (2.8)

c=r¢cp forB=—1, aza-

The variable @ may be replaced by the new variable y in the following manner:
a=d (1 +67), & =(1 40 a ! (D/ukp)?,
The quantity 6% is on the order of the Peclet number. According to the conditions of this problem, we have § << 1.

With an accuracy to terms of the order of &, the convective-diffusion equation may be written

Broe+ (1 — B 55 = 7% (2.9)

Using the Mises transformation from the variables vy, 8 to the new variables ¢ = y(1 — 8%),B, we can reduce Eq. (2.9)
to an equation of the heat-conduction type:

3
=—§—+B—%)’ (2.10)



with the initial and boundary conditions

¢ =¢, for p=0, 1£0,
¢ ¢y for P — o0, (2511)
¢ =g¢ Ffory=0, r=0.

The solution of Eq. (2.10) with conditions (2.11) is
¢ — o= (6o — o) exf (9 /2V/ ),
X

erf (z) = -;—_;gexp (—t?)dt, (2.12)
The diffusion flux density is
=D 2 e
while the tqtal flux to the bubble surface is
I=2 § Y Gd T (¥ oo dB = 8( ukapD)'“ (Co— ). (2.14)

~1

For a slightly deformed bubble, i.e., one whose shape differs little from the spherical, the parameters in Eq.
(2.14) satisfy the conditions
a1, Koy (1 +0) =a%, p =2 o® (1 +% %D, (2.15)
The equation for the total flux becomes
I =8 (Y, mua®D)” (1 4+ Y1n%™% (6o — ¢5). (2.16)

When corrections of order a'g are discarded, the main term of this equation agrees with that in the Levich equation.

[11.

Using Egs. (1.4) and (1.6), we may write

1 I R T TR (2.17)

3 2v Ve

We note that as the equivalent radius a increases, the corrections to the steady-state flow velocity (2.17) become
noticeable at lower values of a than the corresponding corrections in Eq. (1.7) for the steady-state bubble velocity.

In the case of a. highly deformed bubble,
oy <1, ko =a% p=(2/m) 1 +4x% /m), (2.18)
the total diffusion flux is, with an accuracy to terms of order oz%,
I = 8 (*/;ua®D [ ay) (1 + 209 [ 70) (o — ¢3) . (2.19)

Equation (2.19) shows that the flux to the surface of the highly deformed bubble may slightly exceed the flux to the
surface of a sphere of the same volume and velocity. This is a plausible result, since deformation of the bubble
would be accompanied by an increase in its surface area. The surface area of a disk-shaped bubble increases in
proportion to ¥/3. A slightly slower increase in the diffusion flux, proportional to x¥/?, occurs because the different
parts of the bubble surface are not equally accessible to the diffusion flux. Taking into account the dependence of the
steady-state velocity of a highly deformed bubble on its dimensions (1.9), and relation (1.11) between the degree of
deformation and the steady-state velocity, we write

7488 <ﬂ>% Vaéb [4 L 1‘7< vVs >/] (20— c5) . (2.20)

s
vYoa 2a® Voa
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Comparing the main term in this equation with the Levich equation of the growth of a spherical bubble of
equivalent volume,

Iy = 3.35 (ga5D [ V)" [ (cq — c5) (2.21)

we see that the dissolution (or growth) rate of a disk-shaped bubble is less than that of a spherical one. However, the
ratio of the total diffusion fluxes, I/I; = O.SGX_I/Z, cannot be less than of order unity, since Eq. (2.20) holds only for
degrees of deformation which are not too large (¥ « R/,

Accordingly, the Levich equation (2.21) may be assumed to give correct order~of~-magnitude growth rates (or
diffusion rates) for an ellipsoidal bubble, It should be noted that there is a partial compensation for the effects of the
decreased ascent velocity and the increased bubble surface area on the total diffusion flux as the degree of deformation
increases.

3. Effect of energy dissipation in the hydrodynamic boundary layer and in the wake on the steady-state bubble
velocity and on its growth or dissolution rate, As Moore has shown [3], a more accurate account of energy dissipation
in the hydrodynamic boundary layer and in the wake leads to the following equation for the steady-state bubble velocity:

4 (1 -+ op?) 1/3—\’(11—[24*13) . (3.1)

U 9V 2rkup [og + (1 — cto?) arcetg ool

Here u is the bubble ascent velocity, with an accuracy of order R™Y/?

1 x(@)  x(B) S (0) 8 (%) dv
= 2 Qe Lmerjer
= S(cxo +B)dB \ dv S P —T

-1 0
1 x(£) V3 &y
_ 2 a3 Sr)de S@SE)dr
fo =122 _S1a02+32§ Viee o= 9(1+a2)2§d’S Vi —r—v (3.2)
S (z) = 3ag® [ + B2 (2) ]2 2 =2/ B+ 122 —P). {3.3)

The value 8 =-1 (x = 0) corresponds to the point on the bubble farthest upstream.
It follows from Egs. (3.1)—(3.3) that the steady-state velocity of a spherical bubble is
up = (Yoga® [v) (1 4-2.20 R, (3.4)
This result had been obtained in [3, 8].

The dependence of the integrals in (3.2) on @, or on x is extremely complicated, so Moore [3] carried out a
numerical calculation of the steady-state velocity only in the y region from 1 to 4, These results should evidently be
supplemented by a study of the behavior of (3.1) in the region ¥ >» 1 (ag <« 1), for at least an estimate of the region of
applicability of the equations of the previous section.

As a; — 0, the function
1/ g8 =3/ 50 % [ag? -- B2 (2)]2 (3.5)

tends toward zero in the region where 8%(x) > o}, and tends towards infinity in the region where g%(x) <« af. The
behavior of this function as a; — 0 is not affected when 3(x) is replaced by an expression valid for g(x) <« 1:

B =2/y(z—1*/9). (3.6)
Since
a ¢ 3% v dx
3§ o= | mrrme—mr =t (3.7

then the right-hand side of (3,5) is, as @) — 0, one representation of the d-function. Accordingly, when a% «1, we
may assume that

S(z)=(2/ag)d(x—*/9. (3.8)
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Then

1
VB4 2.54 2,59
flzmSm: FCa Ig= anz . (3.9)
[

An evaluation shows that the integral I, is of the order of oy Y2, An account of this term in Eq. (8.1) leads to
corrections of order af/®. With an accuracy to terms on the order of w; inclusively, the equation for the steady-state
ascent velocity is

Yy )
_31_:1_0-,_3(_1) <1+_291>=1_0-44X_" (1+i)- (3.10)
ag 7 n VE aty,

When x = 4, Eq. (3.10) leads to a coefficient of R™Y/2 which differs by 20% from that given in [3].

Accordingly, the correction to the bubble velocity due to energy dissipation in the hydrodynamic boundary layer
and in the wake turns out to be important both during the motion of a relatively small spherical bubble (since in this
case a quantity of the order of R™Y/2 is not negligible) and in the case of relatively large, highly deformed bubbles
(since the coefficient of the small quantity R7Y/? is roughly proportional to ¥°).

Accordingly, the region of applicability of (3.10) is limited by the condition y? << RY2, The error due to the
replacement of ¥'1/% by ¥* evidently does affect the order of magnitude of the correction.

The dependence (1,9) of the ascent velocity of a deformed bubble on the radius of an equivalent-volume sphere is
not an exact consequence of (1.5) and (1.3), but may be considered a generalization of the experimental data;
accordingly, the corrections to this equation on the order of ¥2/RY/? need not be taken into account.

A more accurate equation for the flow velocity leads to corrections on the order of RV in Eq. (2.19) for the
growth or dissolution rate of the bubble, However, terms of this order also arise during the solution of the diffusion
problem with an account of the real velocity field in the hydrodynamic boundary layer. Since the Prandtl number
satisfies v/D >1, the thickness of the diffusion boundary layer may be assumed negligibly small in comparison with
the thickness of the hydrodynamic boundary layer. Therefore, in solving the convective-diffusion equation, it is
sufficient to consider the velocity field at the bubble surface, The only nonvanishing component of the liquid velocity
at the bubble surface is [3]

(3
L up fA—BNe 4 el e g "0 S (@) de (8.11
v mlarrs) —wlsn) Ciow) ) & 11
0

Here the functions S(x) and x(8) are given by Eqgs. (3.3). The convective~diffusion equation leads to an equation of the
heat-conduction type (2.10), when ¥ and 7 are replaced by the new variables

=t (1= P e e 4y (SB——VS Rt
H= —§—+B—~%’-—1—i°‘—°(3@k) S dp’ (ao? + B7) S Az (3.12)

Then the equation for the total flux to the bubble surface becomes

Iy = 4 (uktpDY" (cy— ¢;) %

T

. X x(8) , y,
x [ =152 )/zjgldﬁ(ao“rﬁz)( VST@;dx']’ - (3.13)

3 tg 3ru pk

o

y 1 x(8) '
~ 1 [ () et | i)

Here I is given by Eq. (2.14).

For a spherical bubble, we have
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2mua

Li=1 [1 —+(3V3—2) (LH = I (1 —1.45R"). (3.14)

Assuming that the flow velocity also incorporates corrections on the order of R™Y/?, we find
I, = 3.35 (ga’D /v)¥2 (1 — 0.35R ~¥2) (¢, — c,). (3.15)
As (3.15) shows, these corrections largely compensate for each other,

Accordingly, for the growth (or dissolution) rate of a bubble close to spherical in shape, we have

I =3.35 (g—@)'“ [1 1640828 g 05 (—"—)/J (co— cy). (3.16)

5
v v ga®

This equation takes into account the effect of a slight deformation on the diffusion flux and the corrections on the order
of R™Y2 to the flow velocity around the bubble.,

In the case of a disk-shaped bubble, Eq. (3.13) leads to

L=t —3Y3 o (BVRAR_ pfy 083 -ur) (3.17)
§ ) ( V&

where I is given by (2.20).

We note that the correction to the diffusion flux for a highly deformed bubble arises primarily at the trailing
edge of the surface, where the streamlines differ significantly from those of an ideal liquid.

Accordingly, the quasi-steady-state growth rate of a disk-shaped bubble is

g VoV r— 2 ag,
I, = 4.68 (;‘ﬁ;) V@D (1 + o —0,33 %/73‘) (Co— Cs) - (3.18)

With an error no greater than 30% of the correction for R ~ 10°, we may replace x!//8 by ¥2, since y? <« RY2,
Furthermore, using the y(a) dependence (1.11), we find that

Iy = 4.68 (i“vg)/m [1 +1.7 (g:j:/gﬁ)w_

—2.9-1072ga (ig_>/<£i>/] (o — c5). (3.19)

S

Equation (3,19) shows that ¥* increases more rapidly than RY/? as the radius of the equivalent sphere increases.
Therefore, the region of applicability of (3.19) is limited by the condition

29402ga(a/v)P(pa/o)3 <€ 1.

For an air bubble in water at 19° C, this means that %% <« 0,085 or a< 0.26 cm. We note that the bubble becomes
nonspherical when ¢~ 0.06 cm.

4, Comparison with experiment, When terms of the order of 1/y and x%RY? in Eq. (3.19) are neglected, the
main term in Eq, (3.19) increases as a!®® as the equivalent radius increases. This result may be assumed to agree
with the experimental data of Shabalin et al, [9] on the dissolution of carbon dioxide from nonspherical bubbles: these
authors concluded that the dissolution rate was proportional to the square of the equivalent radius.

These results can be expressed as a relation among dimensionless criterial numbers. The dimensionless mass
flux is given by the Nusselt number N = I/27Da (¢, — cg). For a nearly spherical bubble, it follows from Egs. (2.16),
{3.14), and (1.6) that ’

N o 1.45 s P,
V5 _1.13<1- VE +8.6:1070 g "R ). (4.1)
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For a disk-shaped bubble, Egs. (2.19), (8.17), and (1.11) lead to

N/VP = 23140%" (o] 6): v2R":x
X[1 — 0.33-10"% (p / o) v 4B} + 0.47. : (4.2)

In the figure we compare the calculated dependence of N/ PY? on R with experimental data on the dissolution of
carbon dioxide in an aqueous solution of glucose by Redfield and Houghton {10]. The first three curves correspond to
Eg. (4.1). The viscosity of the liquid is not small enough to permit the use of Eq., (4.2). Both asymptotic relations (4.1)
and (4,2) were used to plot the fourth curve. The corresponding experimental points were obtained by measurements at
various levels in a column,
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Fig. 1.

As has been noted several times before {10—12], the diffusion flux to a bubble surface at given volume, surface
area, and velocity also depends on the time the bubble stays in the system. The reason for this phenomenon is not
completely clear, since the time required to establish a steady-state diffusion flux during nondetached bubble flow
should be on the order of a/u.

The occurrence of an explicit time dependence in the dependence of N/ PY2onR may be due to the adsorption of
surface-active substances on the surface of the dissolving bubble; this would result in an expansion of the turbulent-
wake region and in a turbulent transfer of the dissolved gas in the wake,

The author thanks V. G. Levich for a discussion of these results,
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